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A Abstract

This thesis investigated the potential of fractal dimension estimation for seg-

menting high resolution polarimetric synthetic aperture radar. The data used during

this research were collected with the Advanced Detection Technology Sensor (ADTS)

developed by Massachusetts Institute of Technology Lincoln Laboratory with De-

fense Advanced Research Projects Agency funding. ADTS is a fully polarimetric

calibrated 35 GHz SAR with one foot impulse response. A method of applying the

correlation dimension algorithm developed by Grassberger and Procaccia for estimat-

ing the dimension of time series data was implemented to estimate the correlation

dimension of polarimetric SAR data.

A threshold sensitivity study was performed to determine which combination

of polarizations used to calculate the correlation dimension resulted in the most

accurately segmented image. Correlation dimension estimates were shown to be

valid and robust features for segmenting ADTS imagery into culture, tree, field, and

shadow regions. Simple thresholding and median filtering of correlation dimension

estimates calculated from non-overlapping windows of ADTS imagery produced seg-

mented imagery that was consistently over 90% accurate when using all four linear

polarizations. An approach was implemented for automatically distinguishing be-

tween different classes of naturally occurring regions within the SAR nage using

correlation dimension estim" tes as input features to artificial neural networks.

xi



FRACTAL GEOMETRY SEGMENTATION

OF HIGH RESOLUTION POLARIMETRIC

SYNTHETIC APERTURE RADAR DATA

L Introduction

1.1 Background

Pattern recognition research at the Air Force Institute of Technology (AFIT)

has been working toward the goal of building a guidance system for an autonomous

missile. The capabilities of this missile will vary depending on the type of target

the missile is designed to attack. If the missile is designated to attack a target at a

known fixed location, the missile's inertial navigation system will deliver the weapon

to the vicinity of the target. At that time a terminal guidance system will take

over and direct the weapon to the approximate target location. The accuracy of the

weapon will depend on the system's ability to correlate a stored target image with

sensor input. However, designing a missile capable of attacking mobile targets is a

much harder task. This missile must be capable of performing a wide area search,

locating potential targets within the search area, then identifying and destroying the

particular target of interest. For this system to be feasible, a pattern recognition

system with a zero false alarm rate must be employed since the missile will strike on

the first detection. If this first detection is a false alarm, the missile is wasted on a

non-target. Worse yet, the false alarm could be a non-military object or an object

of friendly origin. The type of sensor for this mission is an unanswered question.

Different missions require different sensor types (i.e. active or passive) and differ-

ent frequency ranges (i.e. visible, infrared, microwave). The sensor requirements



for finding moving tanks on a desert battlefield vary greatly from finding camou-

flaged vehicles at ambient temperature in a European environment. In general, the

capability to locate and destroy mobile targets autonomously does not exist.

Since the goal of developing a sensor suite capable of autonomously locating

and identifying targets has not been realized, intermediate steps must be taken to

achieve this goal. Technological advancement in sensor design has produced airborne

sensors capable of collecting far more data than can be reasonably handled by air-

crews. If a pattern recognition system could be designed that would provide the

capability to detect and identify targets in real-time with a man in the loop then

as technology advances that capability could be implemented on an autonomous

missile.

One step towards the development of a real-time detection/identification ca-

pability and the ultimate goal of an autonomous missile would be the development

of a pattern recognition system capable of locating all man-made items within a

sensor's field of view. This man-made object detector would allow the human eye

and brain to aid in the identification process. The aircrew would only have to view

imagery containing cultural items thus greatly reducing the amount of data requiring

attention.

1.2 Problem Statement

This thesis research investigated the potential of fractal dimension estimation

to segment high resolution polarimetric synthetic aperture radar imagery. The goal

was to determine if correlation dimension estimates were capable of segmenting one

foot impulse response polarimetric SAR imagery into cultural, tree, field, and shadow

regions.

2



1.3 Summary of Current Knowledge

Synthetic aperture radar, SAR, is a type of radar capable of producing a high

resolution ground map of an area. SAR uses the platform's relative motion with

respect to the ground to synthesize or artificially create a very large aperture. This

aperture synthesis overcomes the physics of real beam radar resolution which limits

the resolution possible for a given system. Polarimetric SAR completely character-

izes the reflectivity of a region by transmitting and receiving both horizontally and

vertically polarized pulses at the same time. This provides enhanced texture sensi-

tivity measurements of the surface. The recent development of a few high resolution

polarirnetric SAR systems has created a tremendous amount of research aimed at

taking advantage of the total phase characterization of the surface.

For a computer to take a SAR image and locate potential targets, some method

of finding the areas of interest in the scene is needed. The process of locating areas

of interest is known as segmentation. Humans are extremely good segmenters. They

can look at a scene and immediately locate areas of interest. To date, computers

have not been successful at quickly segmenting a scene. They are extremely good

correlators or template matchers. However, template matching with a large database

of templates is very time consuming and requires an accurate computer model of the

target of interest. Since it is impossible to know the exact orientation and aspect

angle of the target being imaged beforehand a large number of templates must be

searched through for correlation to be successful. Specific target characteristics can

be difficult to obtain, a complete template library may be difficult to generate.

Many different types of segmentation algorithms exist. These segmentation

algorithms fit into two basic categories: discontinuity and similarity. The first cat-

egory uses abrupt changes to distinguish between regions of interest. Thus, in this

category, discontinuities are processed to detect isolated points, lines and edges in

an image. In the second category, the similarity between pixel values are used to

perform thresholding and region growing. Researchers using these traditional tech-

3



niques have been unable to develop the perfect segmenter (7:331).

Recently, a new field of mathematics, Fractal Geometry, has emerged that may

provide an answer to this segmentation problem. The applicability and potential of

fractal analysis to image segmentation has been demonstrated (20, 11, 14). Cap-

tain Maneely demonstrated the ability of fractal dimension estimation to segment

coarse resolution (10 meter impulse response) polarimetric SAR imagery. Maneely's

research showed that fractal dimension estimation could be used to separate areas

of high cultural concentration (i.e. cities) and natural regions (14:6-1).

1.4 Scope

This thesis details an approach to distinguish automatically between four

classes of regions (culture, tree, field, shadow) within a high resolution SAR im-

age. The data used during this thesis effort were from the Massachusetts Institute of

Technology Lincoln Laboratory (MIT/LL) Advanced Detection Technology Sensor

(ADTS). The ADTS is a polarimetric SAR operating at 33.56 GHz, capable of col-

lecting one foot resolution images in the range and cross-range directions. The radar

alternately transmits horizontally and vertically polarized pulses and has the ability

to receive both polarizations simultaneously. The complete polarization scattering

matrix (PSM) is collected using this system (17:3-4).

The data used were identified from a clutter data base. Detailed ground truth

of the imagery was not available. However, for the majority of the SAR imagery

used, corresponding aerial photography was available.

All combinations of the linear polarimetric data contained within the PSM

were evaluated to determine which combinations of the data provided the best seg-

mentation results.

1.5 Assumptions

The following two basic assumptions were made:

4



" Fractals model nature. Scientists in many disciplines adopt this as scientific

fact (19:25).

" The SAR image formation process is linear. Fractal dimension is constant

across a linear transformation of a data set (2:180). With this assumption, the

fractal dimension of the surface can be estimated from the SAR image. Alex

Pentland, in his article "Fractal Based Description of Natural Scenes," found

that "we can estimate the fractal dimension of the surface by measuring the

fractal dimension of the image data" (20:187).

1.6 Approach

The objective of this thesis is to answer the following questions:

" Can fractal geometry be used to effectively segment high resolution polarimet-

ic SAR imagery into natural and cultural regions?

" Do naturally occurring regions within a SAR image exhibit values of fractal

dimension that can be used to separate between the regions?

" Does the use of polarimetric SAR data instead of non-polarimetric data im-

prove the ability to segment images using fractal dimension estimation?

* Can an artificial neural network be trained using multiple fractal dimension

images as features to distinguish automatically between different regions within

a SAR image?

These questions were answered by investigating the potential to segment one

foot resolution SAR imagery using correlation dimension estimation, a method of

estimating fractal dimension. After estimating the correlation dimension of SAR

imagery, standard image processing techniques were applied to determine if corre-

lation dimension estimation provided useful features for segmenting SAR imagery.

Also, both supervised and unsupervised neural networks were trained using correla-

5



tion dimension estimates as input features to evaluate the applicability of correlation

dimension estimates as input features for segmenting SAR imagery.

Details of the correlation dimension estimation process and the neural network

implementations are contained in the methodology chapter of this thesis.

1.7 Hardware and Software Requirements

The intent during the course of this research was to develop the software tools

and programs necessary to estimate correlation dimension and segment SAR imagery

independent of computer system being used. All programs were written in C, a highly

portable language. The programs were validated to insure identical results UNIX

and DOS operating systems. The following computer systems were used during the

course of this research effort:

" Sun Sparc 1+ using SunOS v4.01

" C Language Compiler

* ADOBE Photoshop

* 386-MATHLAB t " Software Package

" SUN 3/160 Workstation using SunOS v4.0.3

* 386 Based computer with 80387 Math co-processor using DOS V4.01 Operat-

ing System

" Turbo C V2.0 Integrated Development Environment

1.8 Sequence of Presentation

Chapter II presents the topic of Fractal Geometry. It covers fractals, image

segmentation using fractal geometry, and the application of fractal dimension esti-

mation to SAR imagery.

6



Chapter III contains the thesis methodology. In this chapter the description

and justification of the fractal dimension estimation algorithm are discussed. The

neural network implementation and training details are also presented.

Chapter IV contains the analysis of the implementation and the results ob-

tained.

Chapter V is the conclusion. It presents this researcher's conclusions and

recommendations for further research.

1.9 Summary

In this chapter the need for performing segmentation on SAR imagery was

introduced. Traditional image processing techniques have been unsuccessful at de-

veloping robust segmentation algorithms. This thesis effort is directed at increasing

the knowledge about fractal dimension measurements of polarimetric SAR data.

7



I. Fractal Geometry

2.1 Introduction

In our description of nature the purpose is not to disclose the real essence
of the phenomena but only to track down, so far as it is possible, relations
between the manifold aspects of our experience (4:18).

In 1934, Niels Bohr, in his book Atomic Theory and the Description of Nature,

stated the prevailing belief among scientists that nature was impossible to describe.

That was true using classical geometry. However, in 1975 Benoit Mandelbrot de-

scribed a "Geometry of Nature" that would be able to handle the description of

natural creations. Fractal geometry was born out of the frustration of trying to

describe the shape of a cloud, a mountain, a coastline, or a tree (13:1-5). Once the

language of fractal geometry is mastered, natural objects can be described as easily

as artificial objects (2:1).

2.2 Overview

The purpose of this chapter is to present the topic of Fractal Geometry. First,

fractals will be introduced. Next, image segmentation using fractal geometry is dis-

cussed. Finally, the application of fractal dimension estimation to Synthetic Aperture

Radar (SAR) data will be presented.

2.3 Fractals

Euclidean geometry failed when it came to describing irregular shapes. By

conceiving and developing a new field of mathematics, "Fractal Geometry," Man-

delbrot was able to overcome the limitations of topological dimension imposed by

classical geometry where a point has zero dimension, a line one dimension, a plane

two dimensions, and space three dimensions (6:96-97). The term fractal dimension

8



is a generic term that has been used to describe any dimension that is not charac-

terized by an integer (28:9). A fractal dimension "agrees with our intuitive notion

of dimension (30:1)."

A fractal is by definition a set for which the Hausdorff Besicovitch di-
mension strictly exceeds the topological dimension. (13:15)

Or Df > DT, where D¢ is the Hausdorff Besicovitch or "fractal" dimension, and DT

is the topological dimension.

Understanding the concept of self-similarity or scaling will provide the basis for

gaining an intuitive feel for fractals and fractal dimension. Consider a line segment

as shown in Figure 1. Scaling it down by a ratio, r=l/N, from the whole yields N

identical line segments. The same holds true for a square in a plane and a cube,

scaling them down by a ratio, r=l/v/-, or r=l/,YN, respectively, yields N self-

similar objects either squares or cubes. Generalizing, r=l/ VN" for a D-dimensional

self-similar object that has been scaled by a factor r. Thus, solving for D yields

(19:28-30):

D- log(N) (1)
log(r()

D = Dimension

N = Number of self-similar subintervals

r = Length of each sub-interval

This property of self-similarity is what forms the basis for fractal geometry

(19:28-30).

Any object that has the property of self-similarity is said to be a self-similar

fractal. An analogy of a self-similar fractal that is immediately recognizable to most

Americans is one of a Wheatiest" box with a picture of someone sitting down at

a table with a Wheatiest r box that has a picture of someone sitting down at a

9



1-D N-Parts, scaled by ratio r N 1

Nrl=1

2-D N-parts, scaled by ratio r =

Nr 2 =1

3-D N-parts, scaled by ratio r = 1

Nr 3 = 1

GENERALIZE
For an object of N parts, each scaled down

by a ratio r from the whole

NrD = 1
defines the fractal similarity dimension D

D = 1og(N)log( )

Figure 1. Dimension Determination of Self-Similar Objects (19:29)
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table with a Wheatiest" box (28:3). Viewing the picture of the Wheaties"m box

at different scales results in exactly the same image. By definition, using classical

geometry, dimension is an integer. In fractal geometry, D does not have to be an

integer (13:15). Thus, in Equation 1, D can be replaced with Df, resulting in an

equation for fractal dimension. Fractal dimension gives a more intuitive feel for the

concept of dimension, an indicator of the roughness or wiggliness of a surface. It

provides a method for quantifying natural shapes (30:6-8).

In the last 15 years, since the beginning of fractal geometry, fractals have be-

come an integral part in most fields of science (30:3). The ability of fractals to

describe natural phenomena has led to their use in a wide range of applications. In

his book Fractals Everywhere, Barnsley demonstrates the ability of fractals to model

natural objects. Fractal geometry has been applied to "biological modeling, phys-

iological modeling, geography, coastlines, turbulence, images, computer graphics,

feathers, and ocean spray" (2:backcover).

Fractals in nature are not strictly self-similar. They are statistically self-

similar, meaning they look statistically similar while at the same time they look

different in detail at different length scales over some finite range. The concept

of fractal dimension can still be applied to statistically self-similar objects. Some

fractals demonstrate a property known as self-affinity, where the fractal is scaled by

different scaling factors in each direction (2:43-57). Objects possessing self-affinity

introduce difficulties in determining the fractal dimension. (30:19)

2.4 Image Segmentation

When considering the standard pattern recognition problem of finding an ob-

ject in a scene there are two main approaches. The first approach is processing

the image in such a way as to locate the object of interest directly using template

matching. The second, and more common approach, is to segment the image into

areas of interest using image processing techniques, such as thresholding and edge
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enhancement, then to perform a second level of processing to find the object.

Segmentation is one of the most important elements in automated im-
age analysis because it is at this step that objects or other entities of
interest are extracted from an image for subsequent processing, such as
description and recognition (7:331).

The applicability and potential of fractal analysis to aid in image segmentation

has been demonstrated (20, 11, 14). By measuring the fractal dimension of an im-

age, the fractal dimension of a surface can be estimated. Pentland demonstrated the

ability of fractal analysis to segment an image and yield useful pattern recognition

results (20:661-674). The basis for using fractal dimension as a feature set for image

segmentation is that man-made objects are usually not fractal in nature. Manufac-

tured objects do not exhibit a fractal dimension that is stable, where stable is defined

as a fractal dimension estimate that is the same over a large range of scales. Most

artificial objects are smooth in contrast to natural objects which exhibit a roughness

at all scales of inspection. The smoothness of artificial objects tends to produce a

low and unstable fractal dimension.

Fractal dimension estimation techniques were applied to L-band (24 cm) po-

larimetric SAR data by Maneely in order to facilitate segmentation. Using fractal

geometry he was able to segment coarse resolution (10 meter impulse response) SAR

imagery into natural regions and cities. Taking advantage of the added informa-

tion available from polarimetric data provided better segmentation capabilities than

using straight magnitude information alone (14:6.1-6.2).

2.5 Measuring Fractal Dimension

By applying Equation 1, we are able to determine the fractal dimension of the

four shapes in Figure 2. Each of these shapes exhibits exact self-similarity. Note

that as D! approaches 2 from 1 the shape approaches a plane. This equation can

be extended to higher dimensions. For example, if Equation 1 was extended to
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Figure 2. Fractal Dimensi,-n Estimation (19:27)

two-dimensional euclidean space rather than counting line segments, box counting

would be used. Extending to euclidean three-dimensional space would mean cubes

would be counted (19:61-62). This method is relatively easy to implement and for

low dimensional fractal sets can be quite useful. However, implementing a box

counting algorithm can be computationally very expensive (28:17). To get a feel for

the amount of computer capacity Iequired to implement the box counting algorithm

consider that the number of cubes increases exponentially with the fractal dimension

N(l) = [-Df. The size of the cubes must be small enough to insure asymptotic

scaling has been reached. Thus applying typical numbers D! = 3 and I = .01 then

N is approximately 106. Implementing a box counting algorithm to estimate fractal

dimension for high dimensional fractals is impractical (28:17).

A polarimetric radar produces a full polarimetric scattering matrix consisting

of four complex elements denoted HH, HV, VH, and VV. These complex elements

are collected by first transmitting a horizontally polarized signal and receiving two

orthogonal polarizations deroted HH and HV. Next, a vertically polarized signal is
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transmitted and the two polarizations are received and denoted VH and VV. This

process is repeated, alternately transmitting horizontally and vertically polarized

signals. HV is often assumed to be equal to VH by reciprocity, however the data can

be distinct for a real radar. The three complex elements HH, HV, and VV comprise

the total information in the polarization scattering matrix (17:2).

Starting with radar imagery from a fully polarimetric radar with the intent

to extract as much information as possible using fractal geometry leads to the con-

clusion that a fractal dimension estimation algorithm that can handle a minimum

of eight dimensional fractals is required. The eight dimensions would consist of the

in-phase and quadrature components of each complex element in the polarimetric

scattering matrix. Since the intent is to determine what combination of information

from the polarization scattering matrix provides the best segmentation results, a

fractal dimension estimator that is capable of easily accepting different dimension

fractals as input is required. Because of the large number of pixels contained within

an ADTS image (2048 by 512 pixels) and the number of data points for each pixel,

a computationally efficient fractal dimension estimator is required. With the above

requirements in mind, finding an algorithm to compute fractal dimension of the data

set the researcher is led to evaluate several different methods of implementing a frac-

tal dimension estimator. Several different dimension estimates characterize fractals.

However, only three truly different dimension estimates, fractal or similarity(Df)

(13, 2, 6, 19, 14, 11, 28, 5), inforrnation(u) (28, 12, 9, 5, 8), and correlation(v)

(23, 12, 9, 28, 26, 27, 8, 3, 24) have been discussed at great lengths in the liter-

ature. In their article, The Infinite Number of Generalized Dimension of Fractals

and Strange Attractors, Hentshel and Procaccia, came to the conclusion "there is an

infinite number of different (and relevant) generalized dimensions" that can charac-

terize fractal objects (10:436). Grassberger and Procaccia determined that all three
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different dimension estimates are related and in general (9:191):

v < a _ Df (2)

v = correlation dimension

a = information dimension

D! = fractal or similarity dimension

Grassberger and Procaccia also developed a method for determining the cor-

relation dimension of fractal data that is not computationally intensive and allows

the flexibility to process various dimensions of fractal data without extensive soft-

ware modifications (9:189). Many articles have been written discussing correlation

dimension estimation (23, 12, 9, 28, 26, 24, 8, 3, 27). Theiler provides an excellent

discussion on correlation dimension, how to implement it, and common sources of

error involved in the process of determining correlation dimension (28:12-21).

This researcher decided correlation dimension estimation was the proper path

to pursue in search of a fractal geometry approach to segmenting SAR imagery. This

decision was made because estimating correlation dimension is not computationally

expensive to implement and provides the flexibility required to experiment with

numerous combinations of SAR data input (9:189).

2.6 Summary

Fractal Geometry has drastically changed the way scientists look at the world.

It is no longer impossible to describe and model nature. Fractal dimension estimation

techniques have proven useful in such diverse fields as biology, physiology, topology,

and computergraphology. Measuring the fractal dimension of sensor imagery has
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been proven to be a useful technique for determining the fractal dimension of nature

itself. Fractal dimension estimation offers an alternate means of segmenting high

resolution synthetic aperture radar polarimetric data.
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III. Methodology

3.1 Introduction

This chapter describes the approach and methodology used during this thesis

effort to investigate the potential of correlation dimension estimation to segment

polarimetric SAR imagery. The chapter begins with a review of the objectives of

this thesis and an overview of the approach taken to answer these questions. Follow-

ing the overview, a description of the polarimetric radar collection system and the

data it produces will be provided. After describing the data, correlation dimension

estimation is introduced and the approach taken to apply the correlation dimension

estimation process to polarimetric SAR imagery is presented. Then, the procedure

used to evaluate the resulting correlation dimension image is discussed. Finally, de-

tails of two different artificial neural network systems implemented to distinguish

automatically between different naturally occurring regions will be examined.

3.2 Overview

The goal of this thesis was to determine if correlation dimension estimates are

valid features for use in segmenting SAR imagery. The first objective was to deter-

mine if correlation dimension estimation of SAR imagery could be used to distinguish

between naturally occurring regions and man-made regions. Secondly, could correla-

tion dimension estimates be used to distinguish between different naturally occurring

regions such as tree, field and shadow. Other thrusts of this research were in the

following two areas:

Polarimetric SAR How does using polarimetric SAR data affect the correlation

dimension estimation? Do multiple polarizations aid in segmentation?

Neural Network Can an artificial neural network be trained to segment SAR im-

agery automatically using correlation dimension estimates as features?
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3.3 Approach

Shown in Figure 3 is a block diagram of the methodology. Each SAR image

consisted of In-phase (I) and Quadrature (Q) components corresponding to each pixel

in the image. The first step taken was to convert the SAR image data into UNIX

format. A C program DETECT.c was executed to convert the I and Q components

into magnitude values for display. Aerial photographs, ground photographs, and

any other available ground truth documentation of the imaged sites were used to

produce image truth templates from the displayed SAR images. These image truth

templates were considered to be an accurate representation of the SAR image and

as such were used to evaluate the accuracy of the resulting segmented images.

FRACTAL.c was the program used to produce correlation dimension images

from the input SAR images. The approach taken was to sub-divide the SAR im-

age into non-overlapping regions (windows). The correlation dimension, (y), of each

window was calculated based on window size, the distance calculation parameter,

and polarization combination. Window size ranged from 4 x 4 to 16 x 16. Magni-

tude, Phase, both Magnitude and Phase, and I and Q were used as parameters for

determining which components to used for distance calculations. The polarization

combinations used were the fifteen different combinations of the four elements in the

PSM (HH, HV, VH, VV, HH & HV, HH & VH, HH & VV, HV & VH, HV & VV,

VH&VV, HH&HV&VH, HH&HV&VV, HH&VH&VV, HV&VH&

VV, HH & HV & VH & VV). The result of calculating the correlation dimension

for a particular combination of polarizations was a file containing one correlation

dimension estimate for each window of the original SAR image. This resulting file

is referred to as a correlation dimension image.

After creating the correlation dimension image, two separate approaches were

taken to evaluate the potential of using correlation dimension estimates for segment-

ing SAR imagery. The first approach was using standard image processing tech-

niques (thresholding, median filtering) to produce segmented images. In the second
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Figure 3. Block Diagram of Methodology
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approach, two different types of artificial neural networks (ANN) were trained using

multiple correlation dimension images to obtain correlation dimension estimates as

input features to produce segmented images. The two ANNs used were the Koho-

nen, an unsupervised ANN, and a radial basis function (RBF), a supervised ANN.

The segmented images produced by the two approaches were then compared pixel

by pixel to the image truth template to evaluate the accuracy of the segmentation.

The majority of this thesis work was performed using the UNIX operating

system on SUN workstations. However, two other computers running the UNIX

operating system were used to execute batch jobs of the correlation dimension es-

timation software. These systems were the AFIT ELXSI 64 systems (Galaxy and

Orion). VMS was used only when necessary to convert data into a format usable by

UNIX. All C programs were also converted to run on DOS systems using Turbo C

by Borland.

3.4 Advanced Detection Technology Sensor

The Advanced Detection Technology Sensor (ADTS) is a 35 GHz monostatic

synthetic aperture radar system developed for Defense Advance Research Project

Agency by Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL).

ADTS is a coherent and fully polarimetric calibrated SAR system. The resolu-

tion used during this research effort was one foot in both range and azimuth. The

polarimetric data for a particular scene consists of four files corresponding to the

four complex elements (HH, HV, VH, VV) from the polarimetric scattering matrix

(PSM). The first letter in the identifier of the elements of the PSM corresponds

to the polarization of the transmitted signal and the second letter corresponds to

the polarization of the received signal. For example, HH signifies the horizontally

polarized transmitted signal received with a horizontally polarized antenna.

The data used consisted of the I and Q components of each polarization in

8-8-4 compressed format and stored on 2.3 Gigabyte 8 mm Exabyte Tape using the
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VMS operating system (16). Appendix A describes the procedure used to convert

the 8-8-4 compressed data into a UNIX float format file containing the I and Q

components alternately. In order to view the imagery, a C program, DETECT.c,

was executed on the UNIX float format files. DETECT.c calculates the magnitudes

from the I and Q values and then logarithmically scales the magnitudes between

0 and 255 before creating an unsigned byte output file. These unsigned byte files

could then be viewed using standard image processing software available on the SUN

workstations or Macintosh systems.

3.5 Data Sets

MIT/LL has collected a large database of ADTS clutter data from various

sites around the country. ADTS clutter data was collected in order to study the

characteristics of background clutter from different regions of the country. The

ADTS data available for this research was clutter data collected in New York, Maine,

and Minnesota. Initially, the goal was to process a large number of images in order to

get a statistically valid evaluation of correlation dimension segmentation capabilities.

Typically, when no specific targets are contained within the clutter imagery, detailed

ground documentation, ground truth, is not available.

One foot resolution was thought to contain the detail necessary to image truth

the imagery directly from the ADTS image without additional ground truth docu-

mentation. ADTS imagery was to be used to provide image truth as to what was

actually in the scene. However, during the image truth process, corresponding aerial

photography of a portion of the data was obtained. After comparing the aerial photo

with image truth templates that had been generated using only the SAR imagery,

it was observed that image truthing without proper ground truth was impractical.

Shown in Figure 4 is an example of an ADTS image that is difficult to image truth

using the SAR image alone. There was a large portion of Mission 98 Frame 08 that

contained a tree farm. The tree farm is not clearly visible in the ADTS image. How-

21



ever, the tree farm can be observed by viewing the aerial photograph corresponding

to Mission 85 Frame 08 shown in Figure 5. Thus, the imagery presented in this thesis

is a subset of the larger set processed and was selected because of additional infor-

mation (i.e. aerial or ground photographs, site sketches) to support image truthing.

Even with aerial photography of the scenes it is still a difficult task to image truth

an image without detailed ground truth measurements.

Figure 4. M98F08 HH Polarization 1024 x 512

Figure 5. Aerial Photograph M98F08

The original SAR image frames were 2048 x 512 pixels. These frames contained

low amplitude return areas on both the left and right side of the image due to the

roll-off of the main beam of the radar. Correlation dimension estimation is based on

relative amplitudes between pixels within a single window. Because of the scaling
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that occurs before estimating the correlation dimension for a particular window, the

correlation dimension estimates appear to be valid in this low return area. However,

the radar is calibrated for the center of the main beam. The low values on both sides

is uncalibrated and solid conclusions could not be drawn from this region. Thus, the

center 1024 x 512 pixels from each frame, corresponding to the calibrated region of

the frame, were used during this research.

3.6 Calculation of Correlation Dimension

As discussed in the previous chapter, there are several different methods of cal-

culating fractal dimension. The method implemented during this research was the

correlation dimension estimation introduced by Grassberger and Procaccia (9:189-

208). This method estimates the dimension based on the statistics of pairwise dis-

tances (28:13).

The correlation dimension (v) as defined by Grassberger and Procaccia is given

as:
1 logCG(r)

V = lim l(3)
S-.O log r

The definition of the correlation integral is:

1 N
C(r) = lim j 0(r - IXj - XJII) (4)

where:

N is the number of points in the data set

O(x) is the Heaviside unit step function

- XjI I is some distance metric between fciandj (i.e. euclidean distance)

r is variable corresponding to range of distance measurements

The method was originally used to estimate the dimension of time series data using
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large numbers of data points. In order to implement this method, the distance via

some metric (i.e. euclidean distance) between every vector combination representing

time series data is calculated. After performing distance calculations, the number

of distances C(r) less than r, as r is reduced from the maximum distance to zero, is

determined. C(r) and r are plotted on a log-log plot and the slope is an estimate of

the correlation dimension estimate. Assuming that amplitude variation from a ho-

mogeneous region of SAR imagery is analogous to multiple samples from time series

data, an application of the correlation dimension estimation method to imagery data

results. Multiple polarization information can be included for each pixel location by

simply expanding the vector used to describe each pixel.

Several interesting questions arose when attempting to implement this proce-

dure for calculating the correlation dimension of SAR imagery.

The first was whether the x and y location of each pixel should be included

in the distance measurement. Since each sampled window would have the same

underlying grid structure could the grid structure be ignored, thus eliminating bias

caused by the grid structure? The x and y coordinates were not included, since the

pixels were considered analogous to time series data and time difference between

different time samples were not included in the distance measurement for time series

data.

The next dilemma encountered was the representation of the input data that

should be used to calculate the euclidean distance between points. The choices

were using 1) the I and Q components of each polarization, 2) the magnitude and

phase information separately or 3) the magnitude and phase simultaneously. Either

magnitude and phase or I and Q provide a complete description of the polarimetric

data available. This question was an open issue during the course of this research

and thus correlation dimensions were calculated using both I and Q, magnitude,

phase, and a combination of both magnitude and phase.

The optimum size of window to use for correlation dimension estimation was
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Table 1. Calculation of Correlation Dimension

For Each Subregion Perform The Following
Step 1 Read in I and Q information

corresponding to each pixel for
each polarization desired

Step 2 Calculate Magnitudes and Phases
Step 3 Find Maximum Magnitude
Step 4 Scale Magnitudes or I and Q data

based on Window-Size
maz-magntude

and calculation parameter being used
I & Q, mag, phase or both mag and phase

Step 5 Calculate euclidean distance between each
pixel in a sub-region and every other
based on calculation parameter

Step 6 Count number of distances less than r
as r is reduced to zero

Step 7 Calculate slope via weighted least squares
method for log C(r) vs log r

Step 8 Slope is Correlation Dimension Estimate

an engineering trade-off. The larger the window size the better the statistical es-

timation of correlation dimension. However, since the goal was to segment SAR

imagery into different naturally occurring and cultural regions it was necessary that

the window sizes be small enough to isolate a specific type of background region.

These conflicting requirements lead to an investigation of window sizes ranging from

4 x 4 to 16 x 16.

The procedure for calculating the correlation dimension for individual sub-

regions of a SAR image is given in Table 1.

5.7 Viewing Correlation Dimension Estimates as Imagery

After the correlation dimension was estimated for each polarization and com-

bination of polarizations, each file containing the correlation dimension estimates
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was converted to unsigned byte format and displayed as an image. Thresholds were

set to separate between different correlation dimension values in the resulting image.

When the image contained large regions of either field, tree, or shadow, a median

filter was applied to reduce noise within the image. Median filtering after setting

the threshold to separate culture was not applied since many of the culture objects

identified were small (i.e. corner reflectors, farm vehicles). These items occupied

only one window and a median filter operation would eliminate that window en-

tirely. After thresholding and median filtering correlation dimension values for each

of the four classes, each class was assigned a particular grayscale value. The result-

ing segmented correlation dimension image was then compared to the corresponding

image truth template in order to evaluate how accurately the regions identified by

correlation dimension estimation matched with the image truth template.

3.8 Artificial Neural Networks

Two different types of neural networks were used to investigate the potential

of combining multiple correlation dimension images into one segmented image. The

two types of neural networks used were the Kohonen, an unsupervised network, and

the radial basis function, a supervised network. This section will provide an overview

of the two neural r,'tworks used.

3.8.1 Kohonen Neural Network A Kohonen neural network is a type of

neural network capable of taking input vectors and clustering them into regions of

similarity. This is done in an unsupervised mode meaning a large number of training

vectors are applied to the training net and the Kohonen network adjusts weights in

such a way as to cluster the data into different classes. This will only work if the

input data are separable. After completing training, the weights from the training

net are used to build a new network. It is necessary at this time to calibrate the new

network by applying vectors of known types and determining which nodes on the

output surface correspond to that particular type of data. If there is a separation
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on the output surface between different types of input data then the network can be

used to classify test data.

A Kohonen training network that has been developed over the course of several

years by AFIT students, primarily Recla and Barmore, was used as the training net

to obtain the weights required to implement the neural net requiring calibration for

SAR image segmentation (21, 1). Shown in Figure 6 is the Kohonen architecture

implemented by Recla and Barmore. The code for this network was written in C for

the VMS operating system. The code was modified to run on both UNIX and DOS

operating systems. The Kohonen training net written by Recla and Barmore is menu

driven and provides the capability to apply the following gain reduction methods:

" Linear Type #1

" Piecewise Linear

" Linear Type #2

* Exponential

" Central-Adaptation

* Exponential/Central-Adaptation

Details of the various gain reduction methods are covered by Barmore and

Recla (21, 1). This Kohonen network has the capability of handling 16 inputs and

producing an output layer up to 20 x 20. Conscience can also be used.

A program (NEWNET.c) was written to take the w'1-_ts from the training

network and produce the output Kohonen layer for a given input. The output node

values were scaled between 0 - 1 in order to determine quickly the winning node or

nodes. The node with the lowest value (i.e. zero) is considered to be the winner.

The input data used to train the Kohonen neural network was the correlation

dimension values obtained from correlation dimension images generated from various
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combinations of polarizations from the PSM. The net was then calibrated by deter-

mining regions on the original SAR imagery that contained a specific type (i.e. field,

tree, shadow, culture) region and identifying which nodes on the output Kohonen

layer correspond to that particular type of data.

After calibration, a file containing vectors corresponding to correlation dimen-

sion estimates from an entire SAR frame is applied to the calibrated network. The

output of the net is a grayscale image whose values represent the class of the winning

nodes. This output image is then compared to the image truth template to evaluate

the similarity of the segmented image with the image truth template.

3.8.2 Radial Basis Function Radial basis functions (RBF), according to

Moody and Darken (15:133), are a departure from the traditional McCullough and

Pitts neuron. A McCullough and Pitts neuron provides for summation of vector

inputs through a threshold device to determine the boolean output. The radial basis

function neuron represents localized Gaussian overlap regions. Their activation is

provided by placement of the Gaussian centers (mean) and establishment of its

inclusion region (standard deviation). Research performed by Moody and Darken

used radial basis functions for prediction of the Glass-Mackey time series. Moody

and Darken point out that RBFs require less training time while still achieving

accuracy equivalent to the multi-layer perceptron (15:140).

RBF networks are trained in a supervised mode. As opposed to the Kohonen

network, the RBF network requires knowledge of the class for each training vector.

The RBF network implemented during this research was developed by Dan

Zahirniak (31). Shown in Figure 7 is the RBF architecture implemented by Captain

Zahirniak. The network consists of an input layer, a hidden layer, and an output

layer. The hidden layer nodes used the Gaussian function as the RBF. Shown in

Figure 8 is an example of a two-dimensional RBF. The centers of the RBF can be

set in several different ways. Captain Zihirniak's network was capable of setting the
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Figure 7. Radial Basis Function Network (18:3)

locations of the center with any of the following rules (31:3-19):

" Nodes at Training Points

" Kohonen Training

" K-Means Clustering

" Center at Class-Cluster Averages

In addition to setting the location of the RBFs the sigmas of the RBF could also be

determined based on the following rules:

* Set equal to a constant

* P-Neighborhood Averages

e Scale according to Class Interference

One hundred training vectors from each class of data were used to train the

RBF. Because of the limited amount of cultural objects contained within the available
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Figure 8. Example of a Two-dimensional RBF (29:34)

imagery, the RBF was trained to identify only the three major naturally occurring

regions present in the ADTS imagery (tree, field, shadow). One hundred training

vectors from each of the three region classes were used to train the RBF. The training

vectors were comprised of correlation dimension estimates taken from corresponding

windows of different correlation dimension images. After training the RBF network,

a file containing input vectors from an entire image is applied to the network. The

resulting file is the grayscale segmented image. This segmented image is compared

to the image truth template to evaluate the accuracy of the segmentation process.

8.9 Summary

This chapter described the thesis methodology. The correlation dimension was

estimated for different window sizes of the polarimetric SAR imagery. These correla-

tion dimension estimates formed correlation dimension images which were processed

via standard image processing methods and neural network implementations to form

segmented images. These segmented images were compared to image truth templates
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to evaluate the accuracies of the different segmentation methods. Presented in the

next chapter are the results of this approach.
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IV. Results

... Test Everything; Hold Fast What Is Good ...
Paul's First Letter to the Thessalonians 5:21

4.1 Overview

The results obtained during the investigation of this thesis effort are presented

in this chapter. The chapter begins with a quick review of the correlation dimen-

sion image formation process. Following that, descriptions of the SAR scenes and

image truth templates used during this thesis are provided along with a subjective

evaluation of the accuracy of the image truthing. Next, an analytical and subjec-

tive evaluation of the correlation dimension segmentation process using only simple

thresholding and median filtering on each correlation dimension image will be pre-

sented. Finally, the results of fusing various combinations of correlation images via

artificial neural networks to produce a final segmented image will be presented.

4.2 Correlation Dimension Image Generation

The original SAR image (1024x512) was divided into non-overlapping windows

and the correlation dimension was estimated for each window using every polariza-

tion and combination of polarizations. This resulted in fifteen different correlation

dimension images corresponding to the fifteen different combinations of components

from the polarimetric scattering matrix being created for each SAR frame. In this

case, a frame consists of four simultaneously collected polarizations from a particular

ground region. These correlation dimension images contained correlation dimension

estimates that ranged from 1.3 to 2.2.
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4.3 Distance Calculation Parameter

As noted in the previous chapters, the SAR data representation either (magni-

tude and phase or I and Q) providing the best segmentation via correlation dimension

estimation was unknown. Initially, magnitude and phase representations of the SAR

data were used to calculate the correlation dimension estimate. Correlation dimen-

sion images were generated using magnitude only, phase only, and magnitude and

phase simultaneously. While there appeared to be some segmentation potential us-

ing either magnitude alone or magnitude and phase simultaneously the use of the

phase alone displayed no segmentation potential. Figure 9 is the hand segmented

image truth template for M98F08. Figures 10 - 12 are examples using magnitude,

magnitude and phase, and phase representations of M98F08 to create correlation

dimension segmented images. Using the I and Q representation provided correlation

dimension estimates that exhibited improved segmentation potential over represen-

tations using magnitude and phase. While an exhaustive analytical evaluation of

the potential of magnitude and phase representation of SAR imagery was not con-

ducted to support this claim, preliminary investigation indicated that an I and Q

representation would provide better segmentation. As a result, the remaining results

presented will be correlation images calculated using an I and Q representation.

Figure 9. Hand Segmented Template M98F08
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Figure 10. Segmented M98F08 Using Magnitude Values Only All Polarizations WS
16 x 16

Figure 11. Segmented M98F08 Using Magnitude and Phase Values All Polariza-
tions WS 16 x 16

Figure 12. Segmented M98F08 Using Phase Values Only All Polarizations WS 16 x
16
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4.4 Window Size Determination

Window sizes evaluated ranged from 4 x 4 pixels to 16 x 16 pixels. The data

were one foot resolution in both the range and azimuth direction resulting in a

decreased resolution for the correlation dimension image. Thus, starting with an

original 1024 x 512 image using a window size of 16 x 16 resulted in a 64 x 32

correlation dimension image representing a 16:1 reduction in resolution (i.e. 16 foot).

In the same manner using a 8 x 8 window size resulted in correlation dimension

images that were 128 x 64. Window sizes of 16 x 16 and 8 x 8 provided correlation

dimension estimates that exhibited great potential as useful features for segmenting

SAR imagery. Using a window size of 4 x 4 resulted in correlation dimension estimates

that were not consistent and robust. Due to the statistical nature of this approach

the 16 pixels in the 4 x 4 window did not provide a large enough sample to be

statistically valid. The remainder of this chapter discusses results obtained using

window sizes of 16 x 16 or 8 x 8.

4.5 ADTS Imagery

This section presents the data the results presented in this thesis were obtained

from. The data were from the following two missions:

* Mission 85 Pass 5 Stockbridge, New York Spring 1989

" Mission 98 Pass 3 Portage Lake, Maine June-July 1989

These missions were selected from the large amount of data available due to the ac-

cessibility of aerial photography and limited ground truth for these frames. Without

detailed ground truth, image truthing of the radar imagery was extremely difficult.

Where to draw the borders between tree, field, and shadow regions was not intu-

itively obvious. More difficult to image truth than naturally occurring regions were

regions containing cultural items. With the exception of corner reflectors, accu-

rately image truthing buildings, vehicles, farm equipment, borders between mowed
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fields and areas otherwise affected by man's presence was nearly impossible with the

ground truth data available. After image truthing a radar image, the 1024 x 512

image truth template had to be reduced by either 1/16 or 1/8 to produce image truth

templates the same size as the segmented correlation dimension images. Cultural

items were, in general, smaller than naturally occurring items and this reduction

process caused many of the smaller items to disappear. Efforts to correct this prob-

lem resulted in image truth templates for cultural items that had locations shifted

by one pixel in the image truth template. Thus, the imagery was divided into two

different categories 1) imagery containing naturally occurring regions and 2) imagery

containing cultural items or regions affected by man's presence (i.e. mowed fields).

The following figures present the horizontal transmit horizontal receive polarization

of the ADTS SAR imagery used during this thesis effort. Following each image is the

corresponding image truth used to evaluate the correlation dimension images and

a description of the image providing a subjective evaluation of the accuracy of the

image truth. This subjective evaluation of the accuracy of the image truth template

is based on the complexity of the scene and the ground truth information available.
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Figure 13. M85F27 HH Polarization 1024 x 512

Figure 14. Hand Segmented Template M85F27

4.5.1 M85F27 This image contains tree, field, and shadow regions. The

scattered trees in the bottom left of the image proved difficult to accurately image

truth as they were not distinct in the displayed radar image. Also present on the

right hand side of this image were ditches not clearly visible when observing the

radar image. Creating an accurate image truth template of this image proved to

be difficult. Figure 14 is the hand segmented image truth template actually used

to analytically evaluate this frame. This researcher estimates the overall accuracy

of the template to be approximately 80%. Tree-field boundaries of this template

are estimated to be approximately 75% and the accuracy of the tree-shadow and

field-shadow boundaries is estimated to be approximately 90%.
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Figure 15. M85F28 HH Polarization 1024 x 512

Figure 16. Hand Segmented Template M85F28

4.5.2 M85F28 This image contains tree, field, and shadow regions. In ad-

dition to the three main regions a dirt road was also present. Since the correlation

dimension of a dirt road falls in the same correlation dimension estimate range as

trees no attempt was made to image truth the road separately. Few if any scat-

tered trees were present in the image. The estimated tree-field accuracy for this

image is approximately 95%. The tree-shadow and field-shadow boundary accuracy

is estimated to be 90%. Figure 16 is the image truthed image used to evaluate this

frame.
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Figure 17. M85F30 HH Polarization 1024 x 512

Figure 18. Hand Segmented Template M85F30

4.5.3 M85F30 This image contains mainly fields, with a tree line and a road

present. In addition, eight corner reflectors and several bent metal poles were present

in this image. Presence of the corner reflectors and the metal pole at the middle of

the scene were accurately determined as they possessed the largest magnitude values

present in the image. Although from ground truth diagrams a metal pole was present

near the tree line, but from the SAR image its locatior, could not be accurately

deterniined. Figure 18 is the image truth template of this frame. This scene was not

used as part of the analytical evaluation thus no estimated segmentation accuracy

is provided.
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Figure 19. M98F07 HH Polarization 1024 x 512

Figure 20. Hand Segmented Template M98F07

4.5.4 M98F07 The majority of this i age is trees, however, the top left

corner of this image contains field. The tree-field boundary is estimated to be at

least 97% accurate. This image presented the least difficulty in defining the boundary

between the regions. Figure 20 is the template used to evaluate correlation dimension

images from this frame.
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Figure 21. M98F08 HH Polarization 1024 x 512

Figure 22. Hand Segmented Template M98F08

4.5.5 M98F08 Looking at the SAR image of this frame is very deceiving.

Initially this frame was thought to be easily image truthed. The tree-field border

looked defined, the pond and the road were darker than the surrounding areas, and

the location of the two corner reflectors was determined accurately. However, when

aerial photography of this frame was obtained part of the "field" originally defined

was actually a tree farm. Using thiz additional information the image was image

truthed to obtain the template shown in Figure 22 with estimated accuracy of 90%.
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Figure 23. M98F09 HH Polarization 1024 x 512

Figure 24. Hand Segmented Template M98F09

4.5.6 M98F09 This image contains many cultural items. In addition to

the long New England style farm house in the center of the image, the image also

contains a large barn, a garage, several smaller sheds with farm equipment and

vehicles scattered across the image. There is a road, corner reflectors, a pond with

a boat, and several fences also present. The region between the road and the pond

contains a tree farm with a grassy region surrounding the pond. Even with an aerial

photograph the resulting image truth template of this frame is questionable. The

aerial photo was not taken at the same time the image was collected thus the location

of the vehicles in this image is indeterminate. Figure 24 is the image truth of the

this image. Estimated accuracy is low. This image was subjectively evaluated.
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Figure 25. M98F10 HH Polarization 1024 x 512

Figure 26. Corner Reflector Template M98F10

4.5.7 M98F10 This image contains a corner reflector calibration array. In

addition to the line of corner reflectors there were also camouflage nets both tented

and laying on .he ground. Camouflage poles hammered into the ground were also

part of the scene. Ground truth data available for this image included photos of all of

the individual components but no detailed site drawings were available to place the

components in relationship to each other. Ground truth photographs indicated that

the area where the calibration array was placed had been mowed. The difference in

darkness values in the image is believed to be the boundary between the mowed and

unmowed sections of the field. With the exception of the corner reflector placement

template (Figure 26) no image truth template of this image was created.
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Figure 27. M98F11 HH Polarization 1024 x 512

Figure 28. Hand Segmented Template M98F11

4.5.8 M98F11 This image contains tree, field and road regions. The bound-

aries between the different regions were reasonably defined. Aerial photography and

the radar image indicated a different texture region to the left of the road, near the

bottom of the image. Precise ground truth made it impossible to image truth this

region. The hand segmented image truth template shown in Figure 28 was used

to evaluate this image. Because of this region of uncertainty the accuracy of the

resulting image truth is estimated to be 90%.
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Figure 29. M98F12 HH Polarization 1024 x 512

Figure 30. h .d Segmented Template M98F12

4.5.9 M98F12 This image contains only tree and field regions. The bound-

ary between the regions is reasonably defined. Figure 30 is the hand segmented image

truth template for this frame. The resulting image truth template is estimated to

be 95% accurate.
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4.6 Evaluation of Segmentation

After the correlation dimension image for each polarization combination was

calculated the images were evaluated to determine the usefulness of correlation di-

mension estimation for SAR image segmentation. Two separate methods of eval-

uation were performed depending on the class of data in the imagery. For frames

containing only naturally occurring regions a image truth template was constructed

using the original SAR image and the limited site information. Threshold sensitiv-

ity plots were generated by analytically comparing the image truth templates with

segmented correlation dimension images with various thresholds. Images containing

cultural items or even natural regions affected by the presence of man (i.e mowed

fields) were difficult to accurately image truth without detailed ground truth. Thus,

on images containing cultural regions, a subjective evaluation was performed.

4.7 Evaluation Methods

The evaluation of the results of these two different approaches were used to

determine the usefulness of performing segmentation on a single correlation dimen-

sion image. For frames containing only naturally occurring regions (i.e. trees, fields,

and/or shadows) an analytical approach was taken to evaluate the accuracy of the

thresholding and median filter approach to segmenting an individual correlation di-

mension image. In this method, approximately 25 correlation dimension images were

created using various thresholds. Each segmented correlation dimension image was

compared pixel by pixel to the image truth template with the overall percentage cor-

rect and the percent correct for each region present calculated for every threshold.

For a particular threshold, the total percent correct, percent correct region 1 and

percent correct region 2 were plotted. The result of plotting these points over a range

of thresholds was a threshold sensitivity plot. The accuracy of using a particular

threshold could be obtained by reading the threshold sensitivity plot. The threshold

where the three curves had an equal percentage correct was chosen as the optimum
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threshold to use for the separation of the two regions. Picking this threshold resulted

in a threshold independent of the distribution of regions within a scene.

Figure 31 is an example of a plot resulting from the method described above.

The correlation dimension image used to generate the data for this plot was calcu-

lated using M98F11 all polarizations. At correlation dimension value 1.982 both tree

and field regions were 90% correct as compared to the template.

Correit-
Field
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1 0 0 - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - -

go ------ -----L-----.-------.-.I...... -----..-----
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Threshold (correlation dimension)

Figure 31. Threshold Sensitivity Plot M98F11 All Polarizations WS 16 x 16

For frames containing cultural items, a subjective evaluation on the accuracy

of the correlation dimension approach will be presented.

The following images: M85F27, M85F28, M98F07, M98F08, M98F11 and

M98F12 will be analytically evaluated. The remainder of the images: M85F30,

M98F09 and M98F10 will be subjectively evaluated.
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4.8 Analytical Evaluation

In this section the results of the analytical approach will be presented. Of the

six frames chosen to be used for this evaluation method, only two of those contained

large regions of shadows. Thus, all six frames will be used to determine the tree-field

threshold and corresponding accuracy and only two frames, M85F27 and M85F28,

will be used to determine the field-shadow threshold and corresponding accuracy.

4.8.1 Tree-Field Boundary Analysis

4.8.1.1 Window Size 16x16 Shown in Table 2 are percentages of

the analytical tree-field evaluations of the six frames for all combinations of polar-

izations where the window size for estimating the correlation dimension was 16 x 16.

The table shows that the overall accuracy across all six images was 85.9%. Table 2

aso shows the mean and standard deviations across polarizations and across images.

Overall, the correlation dimension images generated using all four combinations of

polarizations had a higher percentage correct than any other combination of polar-

izations. Intuitively this makes sense, the more data available the more accurate the

representation. However, this intuitive approach doesn't hold up over all the possible

combinations of polarizations. Looking at the combined mean of all six images, HH

and VV polarizations do not contain more information than the four combinations

of three polarizations each, but HH and VV each have a higher percentage correct.

That statement is not true for each individual image. With the exception of one

image M98F07, the correlation dimension image calculated using a combination of

all four polarizations produces more accurate results than any other combination.

In M98F07, the VV polarization had the highest percentage correct. Another result

that holds overall, but not over every specific image, is that the combinations of

polarizations containing one cross polarization (i.e. VH or HV) or two cross polar-

izations together (with the exception of all four polarizations) are the combinations

that are below the mean of all combinations.
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Table 2. Tree-Field Percentage Correct (Equal Percentage Correct Point) Window
Size 16 x 16

Tree-Field Mission 85 Mission 98 Combined
WS 16 x 16 Frame Frame Statistics
Polarization 27 28 07 08 11 12 Mean Stdev
All 83 T 96 97 90 90 93 91.5 4.646
HH 82 90 96 84 90 90 88.7 4.570
HV 59 82 93 89 87 85 82.5 10.416
VH 62 78 89 85 89 85 81.3 9.393
VV 83 90 98 86 89 83 88.2 5.145
HH, HV 77 91 96 87 90 90 88.5 5.795
HH, VH 77 90 97 88 88 88 88.0 5.860
HH, VV 80 93 96 87 88 91 89.2 5.080
HV, VH 61 83 91 83 80 85 80.5 9.341
HV, VV 77 92 92 88 89 86 87.3 5.088
VH, VV 77 88 96 89 89 88 87.8 5.580
HH, HV, VH 63 81 82 80 80 80 79.3 8.479
HH, HV, VV 77 89 90 86 89 93 87.3 5.055
HH, VH, VV 77 92 91 89 88 91 88.0 5.099
HV, VH, VV 69 83 91 80 81 78 80.3 6.524
Mean 73.6 87.9 93.7 86.1 87.0 86.9 85.9 -
Stdev 8.155 5.018 2.891 3.043 3.464 4.4434 1--
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The percentage correct for each frame also corresponds to the subjective eval-

uation of the accuracy of the image truth template used to evaluate the frame. The

frames where the templates were thought to be accurate are also the ones that have

the higher percentages correct. It is believed that higher percentages could be ob-

tained with this correlation dimension estimation method if more accurate image

truth templates were available. Without detailed ground truth information an ac-

curate evaluation of this method is not possible. Even though some error has been

introduced because the image truth templates are not totally accurate, the results

obtained (i.e. optimum combinations of polarizations, window sizes) should not be

affected greatly.

If M85F27, the image containing the lowest overall percentages correct, was

removed from the combined statistics, the values shown in Table 3 result.

The overall percentage correct increases to 88.5% and the standard deviations

are all 5.036% or less. When M85F27 was included the standard deviations varied

up to as much as 10.416%.

From the above results, it appears that the correlation dimension estimate is a

valid feature to use to segment between tree and field regions within a SAR image.

Shown in Table 4 are correlation dimension thresholds corresponding to the

percentages correct data from Table 2. Examining Table 4 reveals that the thresh-

olds for a window size of 16 x 16 hold for a specific combination of polarizations

over all of the images analyzed. Although one correlation dimension threshold does

not hold over all possible combinations of polarizations, one correlation dimension

threshold can be used over any specific polarization combination. For example, using

the mean threshold from correlation dimension imagt. .calculated using all polariza-

tions combined, 1.9768, will produce a good segmentation between tree and field

regions regardless of the frame used if the the correlation dimension image used was

calculated using all polarizations.
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Table 3. Tree-Field Percentage Correct(Equal Percentage Correct Point) Window
Size 16 x 16 (M85F27 not included)

Tree-Field Mission 85 Mission 98 Combined
WS 16 x 16 Frame Frame Statistics
Polarization 28 07 08 11 12 Mean Stdev
All 96 97 90 90 93 93.2 2.926
HH 90 96 84 90 90 92.4 2.939
HV 82 93 89 87 85 87.2 3.709
VH 78 89 85 89 85 85.2 4.020
VV 90 98 86 89 83 89.2 5.036
HH, HV 91 96 87 90 90 90.8 2.956
HH, VH 90 97 88 88 88 90.2 3.487
HH, VV 93 96 87 88 91 91.0 3.286
HV, VH 83 91 83 80 85 84.4 3.666
HV, VV 92 92 88 89 86 89.4 2.332
VH, VV 88 96 89 89 88 90.0 3.033
HH, HV, VH 81 82 80 80 80 82.6 4.716
HH, HV, VV 89 90 86 89 93 89.4 2.245
HH, VH, VV 92 91 89 88 91 90.2 1.470
HV, VH, VV 83 91 80 81 78 82.6 4.499
Mean 87.9 93.7 86.1 87.0 86.9 88.5 -
Stdev 5.018 2.891 3.043 3.464 4.4434 1- I
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Table 4. Tree-Field Correlation Dimension Thresholds(Equal Percentage Correct
Point) Window Size 16 x 16

Tree-Field Mission 85 Mission 98 Combined
WS 16 x 16 Frame Frame Statistics
Polarization 27 28 07 08 11 12 Mean Stdev
All 1.989 1.974 1.962 1.982 1.982 1.972 1.9768 .00869
HH 1.826 1.806 1.806 1.829 1.823 1.814 1.8173 .009232
HV 1.848 1.842 1.820 1.831 1.826 1.826 1.8321 .009771
VH 1.844 1.837 1.820 1.831 1.826 1.827 1.8308 .007820
VV 1.827 1.810 1.812 1.828 1.812 1.809 1.8163 .007972
HH, HV 1.974 1.960 1.938 1.962 1.952 1.951 1.9562 .011112
HH, VH 1.969 1.959 1.942 1.967 1.958 1.946 1.9568 .009957
HH, VV 1.898 1.885 1.884 1.908 1.912 1.892 1.8965 .010673
HV, VH 1.889 1.889 1.868 1.854 1.869 1.846 1.8692 .018673
HV, VV 1.978 1.963 1.933 1.960 1.947 1.942 1.9538 .014871
VH, VV 1.973 1.959 1.937 1.962 1.948 1.942 1.9535 .012366
HH, HV, VH 1.979 1.971 1.950 1.960 1.957 1.947 1.9607 .011235
HH, HV, VV 1.993 1.983 1.961 1.993 1.996 1.983 1.9848 .011782
HH, VH, VV 1.991 1.980 1.965 1.996 1.993 1.982 1.9845 .010436
HV, VH, VV 1.982 1.974 1.950 1.960 1.951 1.944 1.9602 .013643
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Table 5. Tree-Field Percentage Correct (Equal Percentage Correct Point) Window
Size 8 x 8

Tree-Field Mission 85 Mission 98 Combined
WS 8 x 8 Frame Frame Statistics
Polarization 27 28 07 08 11 12 Mean Stdev
All 63 73 96 86 88 90 82.7 11.190
HH 55 67 82 70 78 77 71.5 8.921
HV 58 63 69 68 66 66 65.0 3.652
VH 57 60 70 66 63 67 63.8 4.375
VV 55 61 80 72 80 80 71.3 9.994
HH, HV 59 63 82 78 81 81 74.0 9.345
HH, VH 59 71 82 79 80 81 75.3 8.138
HH, VV 64 73 88 81 86 92 80.7 9.551
HV, VH 62 65 91 73 70 72 72.2 9.263
HV, VV 60 62 81 79 79 78 73.2 8.668
YH, VV 60 66 82 80 79 78 74.2 8.174
HH, HV, VH 63 70 93 80 81 80 77.8 9.406
HH, HV, VV 64 72 88 87 87 91 81.5 9.912
HH, VH, VV 62 69 92 87 87 92 81.5 11.673
HV, VH, VV 60 70 92 79 78 78 76.2 9.703
Mean 60.1 67.0 84.5 77.7 78.9 80.2 74.7 -

Stdev 2.863 4.336 7.710 6.394 7.191 8.002 - I - 1

4.8.1.2 Window Size 8x8 Shown in Table 5 are percentages of the

8 x 8 window size tree-field analytical evaluation over the six frames for all combi-

nations of polarizations. The overall results over the six frames is a mean percent

correct of 74.7%. As in the 16 x 16 case the correlation dimension image calculated

using all polarizations resulted in the highest percentages correct. The combination

of all polarizations does not have the highest percentage correct for each individual

frame but it does for all frames combined. The percentages correct for 8 x 8 are

lower than the percent correct for a window size of 16 x 16. There are two possible

explanations for this result.

The first possible explanation is that, since the correlation dimension estima-

tion method is a statistical method, reducing the window size from 16 x 16 or 256
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pixels to 8 x 8 or 64 pixels does not provide a large enough sample of pixels to

be statistically valid. The second possible explanation is that, since the resulting

resolution for the smaller window size is finer, the image truth template must be

more accurate to evaluate the segmentation. Since the same image truth is used for

both window sizes the image truth could be causing lower percentages to occur. The

image i, ruth template is not accurate enough to identify every 8 x 8 region correctly.

Both explanations given above contribute to the lower percentages correct. Shown

in Table 6 are the thresholds corresponding to the percentages shown in Table 5. As

in the case of the 16 x 16 window size, the thresholds are consistent for the same

combinations of polarizations over all six images. The standard deviations for the

8 x 8 window size are lower than the standard deviations for the 16 x 16 window size

indicating that the thresholds seem to hold tighter over all the images for a specific

combination of polarization.

4.8.2 Field-Shadow Boundary Analysis Shown in Table 7 are the results

of the analytical analysis for the Field-Shadow threshold evaluation. Results from

both 8 x 8 and 16 x 16 window sizes are shown. The overall result, the 16 x 16 window

size had a 87.6% correct versus the 8 x 8 window size having a 73.3% correct. As

in the tree-field threshold evaluation the 8 x 8 window size had over a 10% lower

overall percentage correct value.

Table 8 contains the thresholds corresponding to the percentages given in Table

7. As before, the thresholds hold over the same combination of polarizations.

4.8.3 Optimum Median Filter Selection The median filter used after

thresholding the correlation dimension image was 5 x 5 for all of the resuits presented

thus far for both indow sizes, 16 x 16 and 8 x 8. As the window sizes decreased

from 16 x 16 to 8 x 8 the question arose as to whether the size of the median filter

should decrease from 5 x 5 to 3 x 3. Table 9 contains the results of a comparison of

images generated using a 3 x 3 and a 5 x 5 median filter to the image truth template.
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Table 6. Tree-Field Correlation Dimension Thresholds(Equal Percentages Correct
Point) Window Size 8 x 8

Tree-Field Mission 85 Mission 98 Combined
WS 8 x 8 Frame Frame Statistics
Polarization 27 28 07 08 11 12 Mean Stdev
All 2.045 2.026 2.026 2.030 2.032 2.022 2.0302 .007360
HH 1.890 1.881 1.884 1.889 1.887 1.887 1.8863 .003037
HV 1.901 1.895 1.888 1.890 1.889 1.890 1.8922 .004525
VH 1.900 1.893 1.888 1.890 1.890 1.890 1.8918 .003933
VV 1.890 1.882 1.884 1.888 1.886 1.886 1.8860 .002582
HH, HV 2.002 1.992 1.982 1.992 1.986 1.988 1.9903 .006263
HH, VH 1.999 1.992 1.981 1.992 1.987 1.988 1.9890 .005520
HH, VV 1.936 1.922 1.926 1.945 1.952 1.939 1.9367 .010323
HV, VH 1.920 1.910 1.907 1.896 1.901 1.896 1.9050 .008485
HV, VV 2.002 1.992 1.981 1.990 1.985 1.986 1.9893 .006675
VH, VV 2.002 1.991 1.982 1.990 1.986 1.986 1.9895 .006318
HH, HV, VH 1.998 1.983 1.982 1.976 1.979 1.973 1.9818 .007988
HH, HV, VV 2.021 2.006 1 998 2.02! 2.026 2.014 2.0143 .009672
HH, VH, VV 2.02 2.001 2.001 2.022 2.026 2.016 2.0143 .009877
HV, VH, VV 1.999 1.982 1.979 1.976 1.978 1.971 1.9808 .008783
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Table 7. Field-Shadow Percentage Correct (Equal Percentage Correct Point)
Window Size 8 x 8 16 x 16
Field-Shadow Frame Statistics Frame Statistics
Polarization 27 28 Mean Stdev 27 28 Mean Stdev
All 80 71 75.5 .045 93 91 92.0 1.0
HH 59 65 62.0 .030 76 85 80.5 4.5
HV 71 75 73.0 .020 90 92 91.0 1.0
VH 68 74 71.0 .030 88 92 90.0 2.0
VV 59 64 61.5 .025 72 84 78.0 6.0
HH, HV 70 70 70.0 0.0 83 90 86.5 3.5
HH, VH 70 76 73.0 .030 80 88 84.0 4.0
HH, VV 70 71 70.5 .005 80 86 83.0 3.0
HV, VH 88 88 88.0 0.00 94 94 94.0 0.0
HV, VV 73 73 73.0 0.00 82 90 86.0 4.0
VH, VV 71 68 69.5 .015 82 88 85.0 3.0
HH, HV, VH 83 82 82.5 .005 91 92 91.5 0.5
HH, HV, VV 75 71 73.0 .020 90 91 90.5 0.5
HH, VH, VV 76 72 74.0 .020 88 90 89.0 1.0
HV, VH, VV 85 81 83.0 .020 92 93 92.5 0.5
Mean 73.2 73.4 73.3 - 85.4 89.7 87.6 -
Stdev 8.1 6.2 - - 6.4 2.9 --
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Table 8. Field-Shadow Correlation Dimension Thresholds(Equal Percentage Cor-
rect Point)

Window Size 8 x 8 16 x 16
Field-Shadow Frame Statistics Frame Statistics
Polarization 27 28 Mean Stdev 27 28 Mean Stdev
All 2.057 2.028 2.0425 .0145 2.020 2.002 2.0110 .0090
HH 1.890 1.881 1.8855 .0045 1.848 1.813 1.8305 .0175
HV 1.903 1.898 1.9005 .0025 1.862 1.851 1.8565 .0055
VH 1.902 1.896 1.8990 .0030 1.857 1.847 1.8520 .0050
VV 1.890 1.883 1.8865 .0035 1.837 1.819 1.8280 .0090
HH, IIV 2.005 1.995 2.0000 .0050 1.993 1.972 1.9825 .0105
HH, VH 2.003 1.996 1.9995 .0035 1.984 1.972 1.9780 .0060
HH, VV 1.940 1.922 1.9310 .0090 1.928 1.898 1.9130 .0150
HV, VH 1.928 1.919 1.9235 .0045 1.911 1.903 1.9070 .0040
HV, VV 2.006 1.996 2.0010 .0050 1.994 1.978 1.9860 .0080
VH, VV 2.006 1.993 1.9995 .0065 1.990 1.969 1.9795 .0105
HH, HV, VH 2.008 1.988 1.9980 .0100 2.003 1.988 1.9955 .0075
HH, HV, VV 2.028 2.007 2.0175 .0105 2.020 2.002 2.0110 .0090
HH, VH, VV 2.026 2.005 2.0155 .0105 2.013 2.001 2.0070 .0060
HV, VH, VV 2.008 1.988 1.9980 .0100 2.008 1.992 2.0000 .0080
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Table 9. Comparison Between 3 x 3 and 5 x 5 Median Filter Operation
Using MSN 98 Frame 07

MSN 98 F07 Tree-Field
WS 8 x 8 Median Filter
Polarization 3 x 3 5 x 5
All 90 96
HH 72 82
HV 65 69
VH 65 70
VV 71 80
HH, HV 75 82
HH, VH 75 82
HH, VV 80 88
HV, VH 85 91
HV, VV 72 81
VH, VV 72 82
HH, HV, VH 88 93
HH, HV, VV 82 88
HH, VH, VV 85 92
HV, VH, VV 86 92

M85F07 was used for the comparison because it had the highest percentages

correct of all the frames. As can be observed from Table 9 using a 5 x 5 median filter

provides higher percentages correct.

4.8.4 Imagery Resulting From Analytical Evaluations The next six

pages contain the segmented images resulting for the thresholds chosen during the

above analytical evaluation. The images shown were created using all polarizations.

First the SAR image is presented followed by the correlation dimension image calcu-

lated with a 16 x 16 window size and then the correlation dimension image caculated

with a 8 x 8 window size.
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Figure 32. M85F27 HH Polarization 1024 x 512

Figure 33. Segmented M85F27 Tree-Field-Shadow All Polarizations WS 16 x 16

Figure 34. Segmented M85F27 Tree- Field-Shadow All Polarizations WS 8 x 8
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Figure 35. M85F28 HH Polarization 1024 x 512

Figure 36. Segmented M85F28 Tree-Field-Shadow All Polarizations WS 16 x 16

Figure 37. Segmented M85F28 Tree-Field-Shadow All Polarizations WS 8 x 8
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Figure 38. M98F07 HH Polarization 1024 x 512

Figure 39. Segmented M98F07 Tree-Field All Polarizations Window Size 16 x 16

Figure 40. Segmented M98F07 Tree-Field All Polarizations Window Size 8 x 8
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Figure 41. M98F08 HH Polarization 1024 x 512

Figure 42. Segmented M98F08 Tree-Field All Polarizations Window Size 16 x 16

Figure 43. Segmented M98F08 Tree-Field All Polarizations Window Size 8 x 8
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Figure 44. M98F11 HH Polarization 1024 x 512

Figure 45. Segmented M98F11 Tree-Field All Polarizations Window Size 16 x 16

Figure 46. Segmented M98F11 Tree-Field All Polarizations Window Size 8 x 8
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Figure 47. M98F12 HH Polarization 1024 x 512

Figure 48. Segmented M98FI2 Tree-Field All Polarizations Window Size 16 × 16

Figure 49. Segmented M98F12 Tree-Field All Polarizations Window Size 8 x 8

As can be observed from the preceding figures, correlation dimension estimates

show potential as a feature for segmenting between naturally occurring regions.
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4.9 Subjective Evaluation

The difficulty encountered when trying to create a 64 x 32 or 128 x 64 image

truth template from a 1U24 x 512 radar imagery without proper ground truth docu-

mentation has already been discussed. Due to this inability to produce an accurate

64 x 32 or 128 x 64 image truth template for SAR imagery containing cultural items

no analytical evaluation of cultural frames was performed. The analytical method

used to evaluate the scenes in the previous section was performed on a pixel by

pixel basis. Because the image truth templates for cultural data has pixels that

are off by one pixel, a pixel by pixel evaluation results in a very low percentage

correct. However, when comparing the correlation dimension image and the image

truth template, a close relationship between where the cultural items appear in the

correlation dimension image and where they appear on the image truth template can

be observed.

The limited amount of SAR imagery containing cultural items processed dur-

ing this thesis effort suggest that correlation dimension estimates of cultural re-

gions/objects is low compared to naturally occurring regions. Histograms of the

correlation dimension estimates of frames containing cultural items are shown in

Figures 50 - 52. These correlation dimension estimates were calculated using all po-

larizations and a 16 x 16 window size. The points on the lower side of the histogram

correspond to objects in the SAR image that are man-made. All of the imagery pro-

cessed containing cultural objects indicated the same phenomena. Cultural objects

possess lower correlation dimension estimates than natural objects.
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Figure 50. Histogram of M85F30 All Polarizations 16 x 16
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Figure 51. Histogram of M98F09 All Polarizations 16 x 16
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Figure 52. Histograr- of M98F10 All Polarizations 16 x 16

Thresholding of the correlation dimension image yielded the location of the

cultural objects. Even though a pixel by pixel analytical evaluation yielded a low

percentage correct, looking at the thresholded correlation dimension image indicated

the thresholding of correlation dimension could locate cultural objects.

Three frames (M85F30, M98F09, M98F10) were subjectively evaluated. In

this section the results of the subjective evaluation will be presented.
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4.9.1 M85F30 Subjective Evaluation Shown in Figure 53 is the HH po-

larization image of M85F30. A corner reflector array consisting of eight corner

reflectors is present in the frame. Figure 54 is the correlation dimension image

corresponding of this frame calculated using all polarizations and a window size of

16 x 16. The correlation dimension values were multiplied by 96 in order to display

them as grayscale values midscale between 0 and 255. From this image it can be

noted that the lowest values correspond to the location of cultural objects (i.e. cor-

ner reflectors) in the image. Figure 55 is the corresponding image truth template for

this frame. Shown in Figure 56 is the corner reflector image truth template for this

frame. Figure 57 shows the result of thresholding the correlation dimension image.

As can be observed from the image all eight corner reflectors and the metal pole

rear the bottom center of the image was detected. What is actually present at the

location on the right hand edge of the image :r unknown. Based on correlation di-

mension estimation, it is cultural. The ground truth was not available to verify this.

The segmented image shown in Figure 58 resulted from setting the threshold to the

tree-field separation threshold and then performing a median filter operation. The

treeline is present in this image. Also note that the area around where the corner

leflectors were placed has a lower correlation dimension than the surrounding field.

Possibly the traffic in and around the corner reflectors trampled the grass in the field

down resulting in a smoother surface.
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Figure 53. M85F30 HH Polarization 1024 x 512

Figure 54. M85F30 Correlation Dimension Values x96 All Polarizations WS 16 x 16

Figure 55. M85F30 Hand Segmented Template 1024 x 512
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Figure 56. M85F30 Corner Reflector Template 1024 x 512

Figure 57. Segmented M85F30 Culture All Polarizations WS 16 x 16

Figure 58. Segmented M85F30 Culture/Trees All Polarizations WS 16 x 16
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4.9.2 M98F09 Subjective Evaluation Figures 59, 60, and 61 correspond

to the original HH polarization SAR, the correlation dimension image and the hand

segmented template for M98F09. Observe from Figure 60 that the lower correlation

dimension estimates correspond to the location of cultural objects within the scene.

Present in the scene are buildings, vehicles, corner reflectors and either a boat or

dock on the pond. Figure 62 is the result of reducing the original 1024 x 512 hand

segmented template for M98F09 by 25% twice. Note that the resizing procedure

while it results in a template of the proper size (16:1 reduction in size) details of

the original image truth template are lost. Shown in Figure 63 is the result of

thresholding the correlation dimension image to separate the cultural items. The

location of cultural objects indicated in Figure 63 correspond closely to the location

of cultural items in the image truth template. Figure 64 is an example of setting the

threshold higher then the threshold where cultural objects are completely separable

from the rest of the image and then performing a median filter operation. Again

the indicated areas correspond closely to the image truth template. Figure 65 is

a 128 x 64 image truth template that was resized from the original image truth

template. This template corresponds to a 8:1 reduction in size from the original.

Shown in Figure 66 is the thresholded correlation dimension image calculated with

window size 8 x 8 using all polarizations. The light pixels correspond to areas of

cultural concentration. The segmented image shown in Figure 67 was generated

using a HI polarization correlation dimension image with window size 8 x 8. The

threshold chosen was higher than the value where cultural objects were completely

separable. After the threshold was set a median filter operation was performed.
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Figure 59. M98F09 HH Polarization 1024 x 512

Figure 60. M98F09 Correlation Dimension Values x96 All Polarizations WS 16 x 16

Figure 61. M98F09 Hand Segmented Template 1024 x 512
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Figure 62. M98F09 Hand Segmented Template 64 x 32

Figure 63. Segmented M98F09 Culture All Polarizations WS 16 x 16

Figure 64. Segmented M98F09 Culture Median Filtered All Polarizations WS 16 x
16
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Figure 65. M98F09 Hand Segmented Template 128 x 64

Figure 66. Segmented M98F09 Culture All Polarizations WS 8 x 8

Figue 6. WIV~c QN&wit



4.9.3 M98F10 Subjective Evaluation The final frame that was subjec-

tively evaluated was M98F10. Figure 68 is the HH polarization image of this frame.

This image contains a corner reflector calibration site along with various other

camouflage experiments. The exact locations of these experiments were unknown.

Ground truth photographs indicated the presence of camouflage nets both tented and

lying on the ground. Portions of the field where the calibration array was place had

been mowed. Figure 69 is the correlation dimension image of this frame calculated

using all polarizations and a window size of 16 x 16. The lower correlation dimension

values correspond to the location of cultural objects within the frame. Figure 70 is a

1024 x 512 corner reflector template for this frame. Shown in Figure 71 is the 64 x 32

corner reflector template. The image shown in Figure 72 is a result of thresholding

the correlation dimension image to separate the cultural objects. The location of

the cultural objects indicated in Figure 72 correspond closely to the corner reflector

template. Three additional regions were also identified as culture. From the pho-

tographs of the site there is a strong possibility that these regions correspond to the

camouflage experiments. Shown in Figure 73 is the result of setting the threshold

at the tree-field threshold value and then performing a median filter operation. An

interesting result is observed. While the tall grass and the short grass possess the

same values of correlation dimension the boundary between the tall grass and the

short grass exhibit lower correlation dimension values. Also the areas surrounding

the corner reflector locations and possibly the other experiments possess lower cor-

relation dimension values. Without detailed ground truth of a large quantity of data

the conclusion that areas trampled down by the presence of man possess a lower

correlation dimension would be impossible to verify.
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Figure 68. M98FI0 HH Polarization 1024 x 512

Figure 69. M98F10 Correlation Dimension Values x96 All Polarizations WS 16 x 16

Figure 70. M98F10 Corner Reflector Template 1024 x 512
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Figure 71. M98FI0 Corner Reflector Template 64 x 32

Figure 72. Segmented M98F10 Corner Reflectors All Polarizations WS 16 x 16

Figure 73. Segmented M98F10 Corner Reflectors/Tall-Short Grass Boundary All
Polarizations WS 16 x 16
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4.10 Neural Network Results

In this section the results of using correlation dimension estimates calculated

using different comb:inations of polarizations as features to train an ANN will be

discussed.

There is nothing mysterious or magic about neural networks, nothing up
the sleeve, there are sets of equations that describe what the artificial
neural networks are going to do (22).

The above statement is one made often by Dr Steve Rogers when discussing artificial

neural networks. However, this researcher has come to the conclusion that im-'e-

menting a neural network is an art and not a science. Individuals that use and teach

neural networks on a daily basis each have their own preference on the kind of neural

network to implement for a given data set. The choice of which neural network to

implement is more a religious choice than a scientific one. The correlation dimer 7ion

values generated during this thesis were applied to two different types of ANY the

Kohonen and the radial basis function.

4.10.1 Kohonen Neural Network A Kohonen neural network was chosen

to incorporate the correlation dimension estimates from all combinations of polariza-

tions into one segmented image. The basis for this choice was the recommendation

of several individuals knowledgeable on Kohonen networks, the need to cluster data

in an unsupervised manner and the availability of proven code. The program writ-

ten by Recla and Barmore was converted from VMS to UNIX and DOS, then the

program was validated on sample data to ensure accurate results. Several additional

programs were written to develop a system capable of end-to-end training, calibrat-

ing, and testing of the Kohonen neural network. After the system was developed

the task of finding the right combination of Kohonen parameters to use to produce

an acceptable segmented image was undertaken. The goal was to train a neural

network to recognize vectors whose elements were made up of correlation dimension
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estimates from the various combination of polarizations and then have that network

produce results that were more accurate than one correlation dimension alone. The

following parameters were variables that could be changed:

" number/combination of input features

" size of output Kohonen layer

" gain reduction method

" conscience value (if used)

" number of iterations

A problem arose when trying to calibrate the trained Kohonen layer to deter-

mine which node on the output Kohonen layer was assigned to particular class of

data. In all the K, honen networks that were trained there were several ambiguous

nodes. Ambiguous nrdes are nodes that win for more than one class of input data.

Ambiguous nodes would win whether tree or field vectors were applied to the input.

Several months of research effort was expended in an effort to find the proper combi-

nation of Kohonen parameters required to accomplish the goal. All images created

using this method demonstrated poor segmentation. This researcher's inability to

train a Kohonen neural network using correlation dimension estimates as features

does not prove that a Kohonen neural network is not capable of segmenting this

data. However, it does indicate that training a Kohonen neural network is not a

trivial exercise.

4.10.2 Radial Basis Function Three hundred vectors created using cor-

relation dimension estimates from two different combinations of the fifteen possible

combinations of polarizations were used to train RBF neural networks developed by

Dan Zihirniak (31). These training vectors consisted of 100 vectors .-ach of tree, field

and shadow regions. The first polarization combination was correlation dimension
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Table 10. Radial Basis Function Output Evaluation
Percentage Matching Image Truth Template

Image Using 4 Correlation Using 15 Correlation
Evaluated Dimension Features Dimension Features
Msn 85 F27 78.3 79.6
Msn 85 F28 93.0 92.5
Msn 98 F07 99.6 98.8
Msn 98 F08 85.6 88.0
Msn 98 Fll 93.3 91.7
Msn 98 F12 95.6 94.9
Mean 90.9 90.9

estimates from all fifteen different combinations of polarizations. The second combi-

nation was a subset of the first. Instead of using all fifteen combinations, only four

correlation dimension features representative of the entire set were used. The four

combinations in the second set were HH, HH & HV, HH & VH & VV, and HH &

HV & VH & VV.

Shown in Figure 74 are the three regions where the 100 training vectors from

the two polarization combinations were obtained. The RBF networks were trained

with the RBF centers chosen via the center class average method. After training

the RBF networks with vectors from the three regions indicated in Figure 74 vectors

from all six images containing only naturally occurring regions (tree, field, shadow)

were processed with the trained networks. Shown in Table 4.10.2 are the results

of performing a pixel by pixel comparison between the resulting RBF output and

the image truth templates for each frame. Results using four correlation dimension

features and fifteen correlation dimension features are provided.

The mean for all images using both four correlation features and fifteen corre-

lation features was 90.9%. Again, Missioa 85 Frame 27 contained the lowest percent-

age correct. As discussed earlier, the image truth templates were not 100% accurate.

Using both four correlation features and fifteen correlation features produced very
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Figure 74. M85F28 RBF Training Regions

accurate results. These results were obtained by training on vectors from Mission 85

Frame 28 and then testing on frames from both Mission 85 (New York collection)

and Mission 98 (Maine collection). The RBF was able to generalize and identify the

regions across all images.

The RBF networks used had many different parameters that could have been

varied to improve performance. The RBF function was not optimized. Trying to

optimize the RBF network without exact image truth templates wa- considered

pointless. Also, if the objective was to train an RBF to get the maximum percentage

possible correct the method used here to chose the training vectors would not have

been used. Rather than using a block of contiguous vectors as training vectors,

a judicious selection process would have been implemented to choose 100 training

vectors from each class that best represented the image data. For instance, more

training vectors would have been chosen around the boundaries between regions since

this was the area most Atten misclassified.

Shown in Figu-e 75 - 92 are the resulting segmented images produced by the

RBF networks. The use of RBF networks has demonstrated that correlation dimen-

sion estimates are robust features to use for SAR image segmentation.
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Figure 75. M85F27 HH Polarization 1024 x 512

Figure 76. M85F27 RBF Output (15 Features) WS 16 x 16

Figure 77. M85F27 RBF Output (4 Features) WS 16 x 16
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Figure 78. M85F28 HH Polarization 1024 x 512

Figure 79. M85F28 RBF Output (15 Features) WS 16 x 16

Figure 80. M85F28 RBF Output (4 Features) WS 16 x 16
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Figure 81. M98F07 HH Polarization 1024 x 512

Figure 82. M98F07 RBF Output (15 Features) WS 16 x 16

Figure 83. M98F07 RBF Output (4 Features) WS 16 x 16
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Figure 84. M98F08 HH Polarization 1024 x 512

Figure 85. M98F08 RBF Output (15 Features) WS 16 x 16

...................

Figure 86. M98F08 RBF Output (4 Features) WS 16 x 16
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Figure 87. M98F11 HH Polarization 1024 x 512

.......

Figure 89. M98F11 RBF Output (45 Features) WS 16 x 16

.... ..... ... 8 8 .



Figure 90. M98F12 HH Polarization 1024 x 512

Figure91. M9F12 RF Outpt .(15.........W..6.x.1

Figure 92. M98F12 RBF Output (45 Features) WS 16 x 16
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4.11 Summary

In this chapter the results of estimating the correlation dimension of polari-

metric SAR imagery has been presented. From the limited amount of data processed

the following conclusions appear to hold:

* Correlation dimension values alone appear adequate to segment between tree,

field, shadow, and cultural regions contained in polarimetric SAR imagery.

" Correlation dimensions calculated using a window size of 16 x 16 provide higher

percentages correct than when a window size of 8 x 8 was used.

* Thresholds used to separate between two regions of a correlation dimension

image generated using a particular combination of polarizations and a partic-

ular window size hold across images, missions, and parts of the country for

all correlation dimension images calculated using the same polarizations and

window size.

" The use of polarimetric data increases the accuracy of correlation dimension

segmentation.

" Correlation dimension estimates were used successfully as features to train

radial basis function neural networks to distinguish automatically between be-

tween different naturally occurring regions within a SAR image.

Based on the above conclusions correlation dimension estimates appear to be a valid

feature to incorporate into a polarimetric SAR segmentation scheme.
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V. Conclusion and Recommendations

5.1 Introduction

This thesis effort was aimed at investigating the potential of correlation di-

mension estimation to segment polarimetric SAR imagery. This chapter provides a

general overview to the results achieved during this research effort. Also provided

are recommendations regarding areas of investigation for future researchers.

5.2 Overall Results

The objective of this thesis was to answer the following questions:

* Can fractal geometry be used to effectively segment high resolution polarimet-

ric SAR imagery into natural and cultural regions?

" Do naturally occurring regions within a SAR image exhibit values of correlation

dimension estimates that can be used to separate between the regions?

" Does the use of polarimetric SAR data instead of non-polarimetric data im-

prove the ability to segment images using correlation dimension estimation?

* Can an artificial neural network be trained to segment SAR imagery automat-

ically using correlation dimension estimates as features?

Based on the results obtained during this research endeavor the following answers

are provided to the above question,.:

* Cultural objects appear to possess lower correlation dimension estimates than

naturally occurring regions. Using correlation dimension estimates alone pro-

vides the ability to detect where man-made objects are located in a SAR scene.

* Using simple thresholding and median filtering of correlation dimension values

calculated from SAR imagery produced segmented images that were consis-

tently 90% accurate when using all four polarizations.

91



" The use of multiple combinations of polarizations from a particular frame in-

creased the probability of segmenting the SAR imagery.

" Radial basis function neural networks provided a method to quickly and ac-

curately segment SAR imagery into different naturally occurring regions using

correlation dimension estimates as features. These trained networks were ca-

pable of generalizing over SAR imagery collected on different missions and

different regions of the country.

The purpose of this research was to investigate the potential of using fractal geom-

etry, particularly correlation dimension estimation, to segment SAR imagery. The

goal was not to design a complex SAR segmenter. The approach used to evaluate

the potential of using correlation dimension estimates to segment high resolution po-

larimetric SAR data was unsophisticated. However, even with this simple approach

remarkably accurate segmented inages were produced. The results presented in this

thesis demonstrate that correlation dimension estimation is a valid method to use

for SAP 1,nagt. --gmncntation.

5.3 Recommendations for Future Research

The following suggestions are provided to anyone interested in furthering this

investigation into the application of correlation dimension estimation to pattern

recognition research involving SAR imagery.

" The conclusions reached during this thesis effort were limited to the accuracy of

the ground truth data available. Accurate ground truth documentation of the

sites imaged by the SAR radar is necessary to evaluate precisely the results ob-

tained using correlation dimension estimation. Obtain detailed documentation

of the sites prior to image selection.

" The window sizes used to calculate the correlation dimension estimates were

non-ovrlapping. Using non-overlapping windows resulted in reduced resolu-
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tion for the resulting segmented image. The use of overlapping windows can be

used to increase the apparent resolution obtained during this procedure. Prob-

ably the best results could be obtained using a sliding window that moved one

pixel at a time. However, the price paid for the increased resolution is longer

computation time.

* This research focused on using primarily the I and Q representation of SAR

imagery. A detailed investigation using the magnitude/phase representation of

SAR imagery is required before concluding that the I and Q representation pro-

vides more accurate results. The code written for this thesis, (FRACTAL.c),

has the ability to calculate correlation dimension based on either representation

of the SAR data.

" Design a sophisticated SAR image segmentation system incorporating correla-

tion dimension estimates as a feature. A tremendous amount of research has

been conducted regarding the development of image segmenters. By merging

the results obtained from this thesis effort with pattern recognition research a

system capable of providing extremely accurate segmentation could result.

" Radial Basis Function neural networks demonstrated great potential as a method

for automatically identifying regions using correlation dimension estimates as

inputs. Additional research is required to specify the optimum parameLers tnd

input features required for a radial basis function.

5.4 Summary

The goals of this thesis were met. Correlation dimension estimates are valid

features for segmenting high resolution polarimetric SAR data. Multiple areas re-

quiring additional research have been identified. Investigation of fractal geometry

applications holds great promise for solving many of the unsolved pattern recognition

problems that exist today.
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Appendix A. Conversion To SUN Format

The data used during this research consisted of the I and Q components of

each polarization that had been converted to 8-8-4 compressed format and stored

on 2.3 Gigabyte 8 mm Exabyte Tape using the VMS operating system. Several

steps were required in order to decompress the imagery and convert it to a format

useable on UNIX and DOS operating systems. Table 11 shows the steps necessary

to convert the 8-8-4 format data into float values useable on UNIX systems. Several

of these steps would have been unnecessary if the available VMS system had had

a 2.3 Gigabyte 8 mm Exabyte tape system installed or if a method to convert the

VAX compressed 8-8-4 format to SUN float values had existed.

Table 11. Conversion From VMS 8-8-4 Format to UNIX Format

Step 1 Read Exabyte tape using UNIX system
Step 2 Transfer files to VMS system via 9 track tape
Step 3 Uncompress on VMS system using programs provided

by MITLL into VMS complex-8 format
Step 4 Transfer to UNIX via 9 Track Tape
Step 5 Convert VMS complex-8 format into UNIX float format
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Appendix B. Fractal.C

DATE: 15 July 1990
VERSION: 15.5

NAME: Fractal.C
DESCRIPTION: This program calculates the correlation dimension estimate

of individual non-overlapping windows of a SAR image based

on Euclidean distances between magnitudes, phases, or both
magnitudes or phases representing a pixel. The input files

contain I and Q components of an image in float values.
FILES READ: FxH.sun Those files contain the I and Q components of

FxHV.sun polarimetric SAR imagery. Program is capable
FxxVH.sun of handling any combination of these

FxxVV. sun polarizations.

FILES WRITTEN: Fxx(polarizations).flt This file contains the correlation

dimension estimates of the SAR image
based on window size and polarizations

chosen. (float format)
AUTHORS: Algorithm written by Joseph Brickey, Extensive prograing

modifications by Michael Bryant and Kevin Wiley

$include <stdio.h>
/*#include <sys/stat.h>*/ /* for DOS use only *

$include <math~h>

#include <fcntl .h>

/**include <unistd.h>*/ 1* for DOS use only 4

/* Global Definitions */

$define IMAGE-.WIDTH 1024 /* full image size 4

$def ine IMAGE-H.EIGHT 512
*def ine VINDOW..SIZE 16 /* window is square 4

#def ins UDATA 25
$define PI 3.14159265
#define SEEN-CUR I
*define SEEX.5E7 u

*define CELL-.OFFSET (IMAGE-IDTH - WINDOW-.SIZE)
*def ine window..high..image..uidth WINDOW-SIZE * IMAGE-WVIDTH
*def ine dist.dim (VIIDOW-.SIZE*WINDOV..SIZE*WIDOV..SIZEWINDOW..SIZE-

VINDOW.SIZE*IIDOV_.SIZE)/2

struct cmplz

float real, imag;

struct phasor

float nag, phase;

int ndatat;
float as, abdeyt, *xt, eyt;

FUNCTIONS
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int compare-floats (eleal, ele&2)
float Celeml, oelem2;

if (celenl < eelon2) roturn( );
if (celeml > *eleOM7,tur1 )
return (0)

/s Sub-routine to road I and Q components of individual window *
void Read .block(sar-file, seek~cell, block)
int sarf ii;
long seek-.cell;
struct cmplx *block;

int row, row-.bytes a VINDOV-.SIZE * sizo(struct cuplx);
unsigned next-row-.offuet - CEIL-OFFSET * sizeof(struct caplx);

long bytes-read;

if (lseek(ear..file, seek..cell, SEEK-SET) --IL)

fprintf(stderr, "Seek error ix. Read-block\n");
exit(i);

for (row - 0; row < VINDOW.SIZE; ++row)

bytes-read - read(sar-file, block, row-bytes);
if ( bytes-.read !- row-.bytes)

fprintf(stderr, "Read error in Read..block\n");
printf(seek-ceUl - %ld, bytes-.read -*~ "
seek..cll, bytes-.read);
exit(l);

block +- WINDOV.SIZE;
ifflseek(sar.file, next..rov..offset, SEEK-.CUR) .U-IL)

fprintf(stderr, "Seek error in fead-block\n");

/* Sub-routine to write correlation dimension value (elope) to a file e
void Write-.results(result-.file, slope)
int result-.file;
float slope;

vrite(result-.file, &slope, 5i2eof(float));

/cSub-routine to calculate magnitude and phase from I and Qcomponents .
float Cmplz.to-Phasor(c-block, p-block)
etruct cmplx ec-.block;
struct phasor cp-.block;

float max-mag a 0.0;
int i, imar - VIUDOY..SIZECVIUDOV..SIZE;

for Ci - 0; i < i-max; +-,-

p..block-)mag - sqrt((c-.block->real c c-.block-),real) +
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(c-.block->.imag * c..block->i~ueg));

if (p-block-)mag > max-uag) uax..nag - p..block-)uag;

if (p.block->mag > 0.0)
p..block->phass - atan2(c-block->iuag, c..block->roal);
else
p..block->phase - 0.0;

+cblock;
*+p-block;

return (max-nuag);

Is Sub-routine to scale magnitudes end phases to fill window C
void Scale(p-block, max-nag, vector)
struct phasor Op..block;
float uax..mag;
struct phasor *vector;
f
mnt i, iLmax - V1IDOW.SIZE*VIEIDOV-SIZE;
float nag-s.cale - WINDOV.SIZEIsax-mag;

float phase-scale - VINDDOV.SIZEI(2 * PD);

for (i - 0; i < Lumax; ++i)
f

vector->nag - c..block-)mag * nag-scale;
vector->phas. - c..block-).phaae * phase-.scale;

+4c..block;
++vector;

/s Sub-routine to calculate Euclidean distance between magnitudes,
Is phases, or both magnitudes and phases based on polarizations used. s

float Calc-.dist(vector, dist-.vector, r..or..p, nu..f ilea)
struct phasor **vector;
float dist-.vector[];
int em~or-p;

unsigned first, second;
unsigned i - 0, j;
unsigned max-.count a VINDOVSIZE * VIIDOV..SIZE;
float max-.distance a 0.0;
for (first =0; first < max-.count; ++first)

for (second =first + 1; second < max-.count; ++second)
I
dist-.vactor(i] - 0.0;
for(J-0; J<num.files; -+J)

switch(..or..p[j])

case 'bP

dist-.voctor~iJ 4.

(vector [jI first] .mag -

vector~jJ (second] meg)*
(vector (jJ[first] meg -

vector (jJ second] .msg);
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case)I
f
dist..,ector~iJ +-
(vactor(J][first) phase -
vector~ji (second] .phase)*
(vector~j) (first) phase -

vector~j) (second) phase);
break;

case )a,
f
dist-vector~j) 4

(voctor~jJ (first) .uag -
vector~j] (second) .iag)
(vector(j] (first) .uag -

vector~jJ [second] muag);

diet..vector(i) - sqrt(dist-vector(i]);
if (4 st-.vactor~iJ >iar..distance)
max-distance - diet-.vector~i);

return(mar.distance);

/* Sub-routine to calculate log(r) end log(c) to be used to find slope *
int Calc(dist-.vector, logr, logc, max-dist)
float dist-voctorl, logr(J, logc[], max-diet;

int last - IDITI - 1;
mnt 1, j;
float r(NDATAJ, c[IDLTI], factor =IDITAI ar.dist -0.000001;

float interval - max-dist/UFDATA;
int zeroes - 0;

for(iO0; i<-last; i++)

r(i] - (j+l)e(interval);
cUI) . 0;

far(jO0; J~dist..diu; J++)

i - (int)(dist.vector~j) factor);

c[01 *- 2;
for(J-1; J(UDATA; Ji..)
c~j] a c(J-1) + c(j] * 2;

c[24] -- 2;
for(i-0; i<NDATA; i4.+)

if(c~i]>0)

zeroes -1

break;

for(i-0; i<IDATA-zoroes; i++)
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logr[i] - log(r~i~zeroe);
logc~i] - log(c[i+zeroos]);

return(zeroes);

/* The following two sub-routines rofunc and medit are used to *
/* calculate the slope of the line of c vs r by weighted least squares *
float rofunc(b)
float b;

mnt j,nl,nmh,nmul;
float arr(NDITAJ ,d,sum=O.0;,

ni-ndatat+1;
rml-ni/2;
nah-ni-nal;
for (j0O;j~ndatat ;j++)
arr[j1-yt~j]-bext~j1;
qsort(arr, ndatat, sizeof (float), compare-floats);
a0.5*(arr[nml-1]+&rr[umh-1J);
abdewt-0.0;
for (j-O;j~ndatat;j++)

d=yt~j]-(b*xt~j]+aa);
abdevt +- fabs(d);
sun +- d > 0.0 ? xt~jj -xt[jJ;

return sun;

float medfit(x,y,ndata)
float x[1, y[];
int udata;

int j;
float bb=.0.b1=.,b20.0,del=.,f-.,fl1O.,f20.0,sigb-O.0,tmpq-0.0;
float sx3.0,sy-O.0,sxy-.,sx0.0,chisq=0.0;

adatatandata;
xtx;
yt-y;
for (J=0;J~ndata;je+){
sx uZED);

exy + [JeyljJ;
oxx + z1j*erj];

del-ndata*sxx-sxesx;
a'.(sxzesy-sxesxy)/del;

bb-(ndataesxy-sxesy) /del;
for (Jnl;j<ndata;j+.)
chisq +- (teup-y~jl-(aa+bbex~j]) .tempeteu);
sigbnsqrt (chisq/del);
biubb;
fl-rofunc(bi);
b2obb+((fl > 0.0) ? fabs(3.0*sigb) -fabs(3.0*sigb));
f2urofunc(b2);
while (flef2 > 0.0){
bb.2.Oeb2-bl;
biab2;
fluf2;
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b2-bb;
f2-rofunc (b2);
I
sigb-0.0lesigb;
while (faba(b2-bl) >sigb)
bbO0.5*(bl+b2);
if (bb -bi 11 bb .=b2) break;
f-rofurnc(bb);
if (feul >. 0.0){
fl-f:.
bl-bb;
) else{
f 2-f;
b2-bb;

return(bb);

void main(argc. argv)
int azgc;
char sargv[];

char ia..fnaz. [4] [40], out-fnsme [40J;
int in-file[4], out-f ile;

long block-pointer;
unsigned block-row, block-col, block~rou~uax, blockcol-inax;
atruct cupi RI-block[VIDOV-SIZE] EVIIDOV..SIZEJ;
struct phasor NP-block[IDOV.SIZEJ [VINDO-SIZE];
struct phasor **vector;

struct phasor evec-rous[42;
atruct phasor vec-elensE4] [VIIDOU..SIZE * VIIDOV-.SIZEJ;
float dist-vector [(VINDOV-SIZE*VINDOV.SIZEVIDOVSIZECVINDOW SIZE

- VISDOV.SIZE*VIIDOV.SIZE)/2];
float max-nag, max-.dint, zeroes;
float r [EITAJ, c [NDATA). logr [IDATA], logc [IDATA];
float slope;
int temp, nun-files, a-or-p[4], i;

FILE *log-data;

for(i-0; i<4; ++i) vec-rous~i] - vec-.elems~i] [0];
vector - kvec..rous[0];

nun-.files -argc / 2 - 1;
for(i-0; iftnufileu; +4i)
I
switch(argv[ie2.1] [0])

case 'in'

*..or..p[iJ i's;

break;

case '

u..or-.p[i] -b)

break;

deal

case 'b'



{rnI'sp:fa mpbi-ie . u-ien)

exit(1);

strcpy(in-fname[iJ ,argv[ie2+2));

strcpy Cout-fname *argv (argc-i]);

for(i-0; i~num-.files; ++i)
if(in-.file[iJ - open(in-.fnanoEi], O...DOULY )u-1)

f
printf(lError opening input file %d \n", i);
exit(i);
I

if ((Out.file - open(out-inain, 0..CREIT ( 0..VOILY 0444)) 1

printf("Error opening output file \n");
exit(1);

/*if ((og..data -fopen("LOG.PRIU, 11vti)) ==NML)

fprintt(stderr,Cannot open output fil..\n");
exit(1);

block..roumnax - INIGE-JEIGHT / UINDOV..SIZE;
block.col-max -INIGE-VIDTB / VINDOV..SIZE;

for(block..rou-0; block, row < block..row-m.ax; block.xow++)

/0 printf("block-row - %d\n, block..rou);*/
for(block..col-0; block..col < block-col-max; block-col++)

block-.pointer u (long)(block-col * VINDOV..SIZE +
block-.row * uindou..high-iuage..uidth)

* sizeof(struct caplx);
for(i-0; i~nua..file.; ++i)

Read-block(in.fie[iJ, block~pointer, &Rblock[0] [0]);
ma-a -Cpl-toPhaor(RIblock[0] [0),

&HP-.block [0)(0);
Scale (&NP-.block [0J [0], .g mxnag, Avec..eleis[iJ [0));

max-dAint - Calc-.dist(vactor, dist..vector, a-.or-.p, nua..files);
zeroes - Calc(dit-..wctor, logr. logc. max-diet);
teop - IDATI-zeroem;
I^for(i-0; i<NDATA; +jD

fprintf (log..data,I11 ,%f\n", logr [il, logc [iJ);

slope a modfit(logr, logc, tamp);
/*printf ("slope a %f \n", slop*);*/

Vrit*..r~snlts(out..fil., slope);

fclose(log-data);
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